Sepia Depression Ocean Outlet Landline 2015–2016 Annual Report Card

This report has been prepared for Water Corporation by BMT Oceanica Pty Ltd, September 2016.

Document history

Distribution

Revision	Author	Recipients	Organisation	No. copies & format	Date
А	G Cummins C Hanson	M Lourey	BMT Oceanica Pty Ltd	1 x docm	22/08/16
В	G Cummins C Hanson	L Synnot	BMT Oceanica Pty Ltd	1 x docm	12/09/16
С	G Cummins C Hanson	C Byers B Coonan	Aroona Alliance	1 x pdf	30/09/16
0	G Cummins C Hanson	C Byers B Coonan	Aroona Alliance	1 x pdf	4/11/16

Review

Revision	Reviewer	Intent	Date
A	M Lourey	Technical review	6/09/16
В	L Synnot	Editorial review	19/09/16
С	C Byers B Coonan	Client reivew	18/10/16

Quality Assurance

BMT Oceanica Pty Ltd has prepared this report in accordance with our Health Safety Environment Quality Management System, certified to OHSAS 18001, AS/NZS 4801, ISO 14004 and ISO 9001: 2008.

Status

This report is 'Draft' until approved for final release, as indicated below by inclusion of signatures from: (i) the author and (ii) a Director of BMT Oceanica Pty Ltd or their authorised delegate. A Draft report may be issued for review with intent to generate a 'Final' version, but must not be used for any other purpose.

Approved for final release:

Author Date: 4/11/16

Director (or delegate) Date: 4/11/16

Contents

1.	Introduction	1
2.	EQO 1 - Maintenance of Ecosystem Integrity	2
3.	EQO 2 - Maintenance of Aquatic Life for Human Consumption	7
4.	EQO 3 - Maintenance of Primary Contact Recreation	9
5.	EQO 4 - Maintenance of Secondary Contact Recreation1	1
6.	EQO 5 - Maintenance of Aesthetic Values1	2
7.	References1	4

List of Tables

Table 1.1	Summary report card legend1
Table 2.1	Assessment Against Environmental Quality Guidelines for the
	Maintenance of Ecosystem integrity EQ012
Table 2.2	Assessment Against Environmental Quality Standards for the
	Maintenance of Ecosystem Integrity EQ01
Table 3.1	Assessment Against Environmental Quality Guidelines for
	Maintenance of Aquatic Life for Human Consumption EQO27
Table 4.1	Assessment Against Environmental Quality Guidelines for
	Maintenance off Primary Contact Recreation EQ03
Table 4.2	Assessment Against Environmental Quality Standards for
	Maintenance of Primary Contact Recreation EQO310
Table 5.1	Assessment against Environmental Quality Guidelines for
	Maintenance of Secondary Contact Recreation EQO11
Table 6.1	Assessment Against Environmental Quality Guidelines for
	Maintenance of Aesthetic values EQO 5

List of Appendices

- Appendix A Concentrations of Contaminants in TWW prior to Dilution Compared to ANZECC & ARMCANZ (2000) Species Levels of Protection
- Appendix B WET Testing Results
- Appendix C Physical Properties
- Appendix D Sepia Depression Microbial Sample Data

1. Introduction

This annual report card documents the findings of the 2015–2016 Sepia Depression Ocean Outlet Landline (SDOOL) monitoring program. Protocols and analyses described herein are based on the methods outlined in the Sepia Depression Ocean Outlet Monitoring & Management Plan (BMT Oceanica 2014). Results are reported in the context of the Environmental Quality Management Framework (EQMF) described in EPA (2015). The results are summarised in Report Card format for each relevant Environmental Quality Objective (EQO) (EPA 2015). The report cards contain colour-coded results, with the individual colours representing the extent to which the Environmental Quality Criteria (EQC) were met (Table 1.1).

Table 1.1 Summary report card legend

Management response ¹	Colour
Monitor: EQG met (continue monitoring)	
Investigative : EQG not met (investigate against the EQS), EQS met (continue monitoring)	
Action: EQS not met (management response required)	

Note:

1. The required response following an exceedance of either the Environmental Quality Guideline (EQG) or Environmental Quality Standard (EQS) is shown in parentheses.

2. EQO 1 - Maintenance of Ecosystem Integrity

The EQO 'Maintenance of Ecosystem Integrity' aims to ensure the continued health and productivity of the coastal ecosystem (Table 2.1).

Indicator	Environmental Quality Guideline	Results			Compliance	
Toxicants in tre	eated wastewater-com	rehensive treated wastewater characterisation				
Bioaccumulating toxicants	Concentrations of contaminants will not exceed the ANZECC & ARMCANZ (2000) 80% species protection guideline trigger levels for bioaccumulating toxicants at the diffuser.	Concentrations of cadmium and mercury in the undiluted SDOO reporting and therefore below the ANZECC & ARMCANZ (2000) 1.4 µg/L for cadmium and mercury, respectively) pr	80% species protect	ion guidelines (36 and		
	The ANZECC & ARMCANZ (2000) 99% species protection guideline trigger levels	Contaminant concentrations were lower than the ANZECC & ARMO protection guidelines (95% for cobalt) after dilution equivalent to (1:310) (Table 2a and Appendix A). Table 2a Toxicants in the TWW compared to the relev	that expected at the	ELEPA boundary		
		Toxicant ¹	Waste Stream Trigger ²	Sepia Depression TWW ³		
		Nutrients (µg/L)				
Non		Ammonia-N	154,537	590		
	for non-bioaccumulating	Dissolved metals (0.45 µm filtered) (µg/L)				
loxicants	are met at the edge of	Chromium ⁴	43	<1.0		
	the low ecological protection area (LEPA).	Copper	68	7		
	protection area (LEPA).	Lead	679	<1.0		
		Nickel	2,016	iggers for 99% species at the LEPA boundary ream triggers Bam Depression TWW ³ 590		
		Silver	248			
		Zinc	2124	45		
Non bioaccumulating toxicants t		Organophosphate Pesticides (µg/L)				
		Chlorpyrifos	0.16	<0.1		

Table 2.1 Assessment Against Environmental Quality Guidelines for the Maintenance of Ecosystem integrity EQ01

dicator	Environmental Quality Guideline	Results					Complian
		Organochlorine	pesticides (µg/L)				
		Endrin			1.24	< 0.001	
		Endosulfan sulfate	5		1.55	< 0.001	
		Phenols (µg/L)					
		Phenol			83,685	0.39	
		Pentachloropheno			3,379	< 0.2	
			rocarbons (µg/L)		T		
		1,2,4-Trichlorober	zene		6,046	<20	
		BTEX (µg/L)					
		Benzene			110,890	< 1.0	
			vdrocarbons (µg/L)		15.105	0.01	
		Naphthalene			15,485	< 0.01	
		Benzo(g,h,i)peryle	ne		15,485	< 0.01	
		 TWW = treated w Measured values conservative appr Trigger values for The TTM for the addit 	are total chromium (C coach was taken and a Endosulfan, not Endo ive effect of ammonia boundary was 0.39 ar	r) – while dissolved C ssessment is against sulfan sulfate (Table 3 copper and zinc after	r in TWW is predom the Cr VI trigger. 3.4.1; ANZECC & Af r dilution equivalent	ninantly Cr III, a	
			JEHUIX AT.				
				V stream			
	The total toxicity of the mixture (TTM) for the additive effect of dissolved ammonia,		I toxicity of the TWV TWW concentration	Background concentration ¹	Dilution	Total toxicity of the mixture (TTM) ²	
	mixture (TTM) for the additive effect of dissolved ammonia, copper and zinc (as per	Table 2b Tota	l toxicity of the TW\ TWW	Background	Dilution	the mixture	
	mixture (TTM) for the additive effect of dissolved ammonia,	Table 2b Tota Toxicant	TWW concentration (µg/L)	Background concentration ¹ (µg/L)	Dilution 1:310	the mixture	

Indicator	Environmental Quality Guideline	Results					Compliance	
		2. TTM = [ammonia	a]/guideline + [cop	per]/guideline + [zinc]	/guideline.			
	The EQG will be exceeded if following the 1 hour sea urchin test:	The lowest NOEC rec achieve this NOEC wh (Table 2c and Append	orded during the re nich is lower than t dix B).	eporting period was 12	.5% TWW. Only 8 dilu	utions are required to oundary (at least 1:200)		
	<u> </u>	Indicator	July 2015	October 2015	January 2016	April 2016		
Whole of Effluent Toxicity Wh (WET) testing (cc fold DR	DRNOEC	NOEC	12.5%	25%	50%	50%		
	Where TDA = Typical Dilutions Achieved	Dilutions required to meet the NOEC	8	4	2	2		
	(constant based on 200- fold dilution) DRNOEC = Number of dilutions required to	Dilutions require/dilutions achieved	0.04	0.02	0.01	0.01		
	achieve the No	≤1	Yes	Yes	Yes	Yes		
	Observed Effects	Notes:						
Pocoiving wate	Concentration (NOEC).		rved effect concent	ration.				
Nutrient	Median chlorophyll-a concentration during non river-flow period not to exceed 80 th percentile of reference site data.	Median chlorophyll-a		in the high ecological μ prence site data (0.4 μ) (0.2 µg/L) was lower		
enrichment	Median light attenuation (LAC) during non river- flow period not to exceed 80 th percentile of reference site data.	Median LAC within the HEPA (0.072 Log_{10}/m) was lower than the 80 th percentile of historical reference site data (0.077 Log_{10}/m) (Appendix C).						
Organic enrichment	Median dissolved oxygen in bottom waters (0–0.5 m above the sediment surface) greater than 90% saturation at any site for a defined period of not	Dissolved oxygen sat	uration remained a	bove 90% saturation a	at all times (Appendix	C)		

Indicator	Environmental Quality Guideline	Results	Compliance
	more than six weeks.		
Salinity	Median salinity (0.5 m below the water surface) at an individual site over any period not to deviate beyond the 20 th and 80 th percentile of natural salinity range over the same period.	Within the HEPA, median salinity was below the 20 th percentile of reference site data at 100, 350, 1000 and 1500 m down-current (Appendix C). Assessment proceeded against the EQS (see Table 2.2).	
Receiving wat	er biological measures		1
Dhutoplopleter	Median phytoplankton biomass measured as chlorophyll-a not to exceed 3-times median chlorophyll-a concentration of reference sites, on any occasion during non river-flow period.	There were no instances where median chlorophyll-a concentrations in the HEPA exceeded 3-times the median of reference sites (Appendix C).	
Phytoplankton blooms	Phytoplankton biomass measured as chlorophyll-a at any site does not exceed 3 times median chlorophyll-a concentration of reference sites, on 25% or more occasions during the non river- flow period.	Chlorophyll-a did not exceed 3-times the median chlorophyll-a concentration of reference sites at any site on any occasion (Appendix C).	

The Environmental Quality Guidelines (EQG) for salinity which requires the median salinity (0–0.5 m below the water surface) at any individual site not to deviate beyond the 20th or 80th percentile of the natural salinity range (based on reference site data over the same

period) was not met. Within the High Ecological Protection Area (HEPA), median salinity was below the 20th percentile of reference data at all sites within the HEPA. The EQG was therefore not met (Table 2.1) and assessment proceeded against the EQS which requires that there are no deaths of marine organisms resulting from anthropogenic salinity stress. All salinity measurements within the HEPA were above 35, which is within the accepted tolerances of temperate marine organisms (ANZECC & ARMCANZ 2000). There were no observed (or reported) deaths of marine organisms over the monitoring period so the EQS was considered to be met (Table 2.2).

Table 2.2 Assessment Against Environmental Quality Standards for the Maintenance of Ecosystem Integrity EQ01

Indicator	Environmental Quality Standard	Results	Compliance
Receiving water physi	co/chemical measures		
Bioaccumulating toxicants	No deaths of marine organisms resulting from anthropogenically-sourced salinity stress.	Within the HEPA, there were no observed (or reported) deaths of marine organisms over the 2015–2016 monitoring period	

Notes:

1. Green (■) symbols indicate the Environmental Quality Criteria (EQC) were met; amber (■) and red (■) symbols represent an exceedance of the Environmental Quality Guideline (EQG) or Environmental Quality Standard (EQS), respectively.

2. NOEC = no observed effect concentration; the highest concentration of TWW at which there is no statistically significant observed effect on gamete fertilisation.

3. EQO 2 - Maintenance of Aquatic Life for Human Consumption

The EQO 'Maintenance of Aquatic Life for Human Consumption' aims to ensure there is low risk to the health of human consumers of seafood, which may be exposed to toxicants within the TWW stream (Table 3.1).

Indicator	Environmental Quality Guideline	Results	Compliance
Thermo-tolerant	Median TTC counts at sites at the boundary of the Shellfish Harvesting Exclusion Zone (SHEZ) are not to exceed 14 CFU 100 mL ⁻¹ .	The median value for TTC derived from 120 samples collected over the 2013-2014, 2014-2015 and 2015-2016 sampling seasons was at the limit of detection (<10 CFU/100 mL) and below the EQG (14 CFU/100 ml)	
Coliforms (TTC)	No more than 10% of the samples exceeding 21 CFU 100 mL ⁻¹ as measured using the membrane filtration method.	Less than 10% (6.7%) of TTC samples (8/120) that exceeded 21 CFU/100 mL over the 3-season pooled dataset.	

Table 3.1 Assessment Against Environmental Quality Guidelines for Maintenance of Aquatic Life for Human Consumption EQ02

	nmental Quality Guideline	Results	Compliance
Algal Biotoxins Algal Biotoxins Algal Operation Algal Biotoxins Algal Operation Algal	tions of potentially e at sites at the of the SHEZ not to e WASQAP trigger tions for any of the adrium spp. cells/L); odinium spp. cells/L); ia spp. cells/L); hysis spp. cells/L); hysis acuminta cells/L); ponitzschia spp. cells/L); oo cells/L); oo cells/L); ponitzschia spp. cells/L); oo cells/L); attaction cells/L); oo cells/L); attaction cells/L); oo cells/L); attaction cells/L); at	There were no instances where toxic phytoplankton species were recorded in excess of WASQAP guideline values (DoF 2007).	

4. EQO 3 - Maintenance of Primary Contact Recreation

The EQO 'Maintenance of Primary Contact Recreation' aims to ensure that waters are safe for swimmers (Table 4.1).

Indicator	Environmental Quality Guideline	Results	Compliance
Faecal pathogens	The 95 th percentile value of <i>Enterococci</i> spp. calculated over the bathing season not to exceed 200 MPN/100 mL, outside the post-upgrade boundary.	The 95 th percentile of <i>Enterococci</i> spp. concentrations was 722 MPN/100 mL and exceeded the EQG for primary contact recreation (200 MPN/100 mL) (see Table 4.2)	
Algal biotoxins	Median total phytoplankton cell count for the area of concern (either from one sampling run or from a single site over agreed period of time) should not exceed 15,000 cells/mL.	The median total phytoplankton cell concentration was 11.3 cells/mL (≤15,000cells/mL)	

Table 4.1 Assessment Against Environmental Quality Guidelines for Maintenance off Primary Contact Recreation EQ03

The EQG and EQS for primary contract recreation require the 95th percentile concentrations of *Enterococci* spp. does not exceed 200 MPN/100 mL and 500 MPN/100 mL, respectively, at the post upgrade boundary. The 95th percentile *Enterococci* spp. concentration assessed based on three sampling seasons of pooled data (to achieve a sufficient sample size of n=115) was 722 MPN/100 mL, exceeding both the EQG and EQS (Table 4.1 and Table 4.2). The exceedance is due to a change from the ANZECC & ARMCANZ (2000) limit that applied when the post-upgrade boundary was defined to the more conservative 95th percentile guideline for *Enterococci* spp. preferred by the EPA (2015). Water Corporation is completing modelling to better define risk and/or determine the appropriate management area for the revised assessment criteria in association with the DoH as a management response.

Table 4.2 Assessment Against Environmental Quality Standards for Maintenance of Primary Contact Recreation EQ03

Indicator	Environmental Quality Standard	Results	Compliance
Faecal pathogens	The 95 th percentile value of <i>Enterococci</i> spp. calculated over the bathing season not to exceed 500 MPN/100 mL, outside the post-upgrade boundary.	The 95 th percentile of <i>Enterococci</i> spp. concentrations was 722 MPN/100 mL and exceeded the EQS for primary contact recreation (500 MPN/100 mL)	

5. EQO 4 - Maintenance of Secondary Contact Recreation

The EQO 'Maintenance of Secondary Contact Recreation' aims to ensure that waters are safe for recreational water users (Table 5.1).

Table 5.1 Assessment against Environmental Quality Guidelines for Maintenance of Secondary Contact Recreation EQO

Indicator	Environmental Quality Guideline	Results	Compliance
Faecal pathogens	The 95 th percentile value of <i>Enterococci</i> spp. calculated over the bathing season not to exceed 2000 MPN/100 mL, outside the post-upgrade boundary.	The 95 th percentile of <i>Enterococci</i> spp. concentrations was 722 MPN/100 mL and met the EQG for secondary contact recreation (2000 MPN/100 mL)	

6. EQO 5 - Maintenance of Aesthetic Values

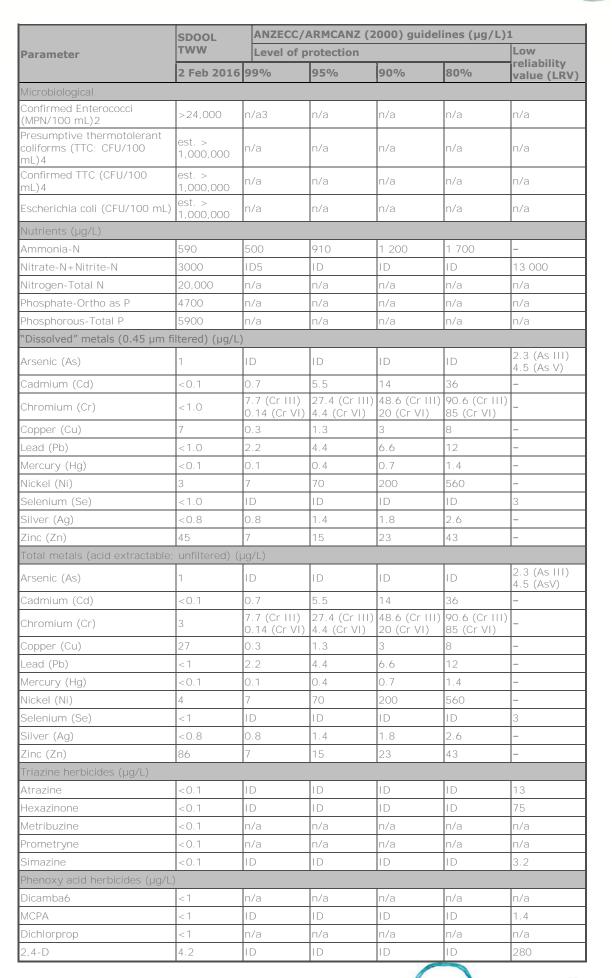
The EQO 'Maintenance of Aesthetic Values' aims to ensure that waters are aesthetic appeal (Table 6.1).

Indicator	Environmental Quality Guideline	Results	Compliance
Nuisance organisms	Macrophytes, phytoplankton scums, filamentous algal mats, blue-green algae and sewage fungus should not be present in excessive amounts.	Nuisance organisms were not present in excessive amounts	
Faunal deaths	There should be no reported incidents of large-scale deaths of marine organisms relating from unnatural causes.	There were no instances of dead marine organisms observed	
Water clarity	The natural visual clarity of the water should not be reduced by more than 20%.	Measurements of light attenuation confirmed that the natural visual clarity of the water was not reduced by more than 20%.	
Colour	The natural hue of the water should not be changed by more than ten points on the Munsell scale.	There were no instances of noticeable colour variation	
Surface films	Oil and petrochemicals should not be noticeable as a visible film on the water or detectable by odour.	There were no occasions where oil was observed as a visible film on the surface of the water	
Surface debris	Water surfaces should be free of floating debris, dust and other objectionable matter, including substances that cause foaming.	There were no instances of floating surface debris	

Table 6.1 Assessment Against Environmental Quality Guidelines for Maintenance of Aesthetic values EQO 5

Indicator	Environmental Quality Guideline	Results	Compliance
Odour	There should be no objectionable odours.	A noticeable odour was recorded on one sampling occasions (11 March 2016), coinciding with a dam flushing event	
Fish tainting substances	Concentrations of contaminants will not exceed the Aesthetics guidelines for fish tainting substances at the Shellfish Harvesting Safety Zone boundary.	Concentrations of contaminants did not exceed the aesthetics guidelines for fish tainting substances at the Shellfish Harvesting Safety Zone boundary	

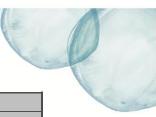
7. References


- ANZECC, ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1: The Guidelines. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT, October 2000
- BMT Oceanica (2014) Sepia Depression Ocean Outlet Monitoring and Management Plan. Prepared for Water Corporation by BMT Oceanica Pty Ltd, Report No. 821_001/1_Rev5, Perth, Western Australia, April 2014
- DoF (2007) Western Australian Shellfish Quality Assurance Program (WASQAP) Operations Manual. Department of Fisheries, Perth, Western Australia
- EPA (2015) Environmental Quality Criteria Reference Document for Cockburn Sound – A Supporting Document to the State Environmental (Cockburn Sound) Policy 2005. Environmental Protection Authority, Perth, Western Australia, March 2015
- McAlpine KW, Wenziker KJ, Apte SC, Masini RJ (2005) Background Quality for Coastal Marine Waters of Perth, Western Australia. Department of Environment, Report No. 117, Perth, Western Australia

Appendix A – Concentrations of Contaminants in TWW prior to Dilution Compared to ANZECC & ARMCANZ (2000) Species Levels of Protection

watercorporation.com.au

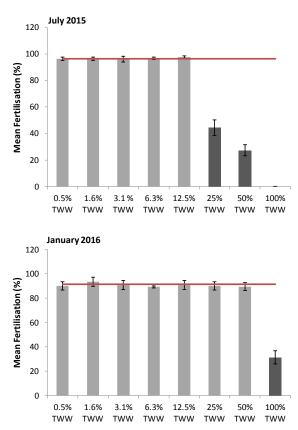
	SDOOL ANZECC/ARMCANZ (2000) guidelines (µg/L)1						
Parameter	TWW Level of protect				Low		
	2 Feb 2016	99%	95%	90%	80%	reliability value (LRV)	
2,4,5-T	<1	n/a	n/a	n/a	n/a	n/a	
2,4,5-TP	<1	n/a	n/a	n/a	n/a	n/a	
2,4-DB	<1	n/a	n/a	n/a	n/a	n/a	
МСРР	<1	n/a	n/a	n/a	n/a	n/a	
Triclopyr7	<1	n/a	n/a	n/a	n/a	n/a	
Organophosphate pesticides	(µg/L)	1	I			1	
Azinphos-Methyl	< 0.1	ID	ID	ID	ID	0.01	
Azinphos-Ethyl	< 0.1	n/a	n/a	n/a	n/a	n/a	
Chlorpyrifos	< 0.1	0.0005	0.009	0.04	0.3	_	
Chlorfenvinphos (E)	< 0.1	n/a	n/a	n/a	n/a	n/a	
Chlorfenvinphos (Z)	< 0.1	n/a	n/a	n/a	n/a	n/a	
Demeton-S-Methyl	< 0.1	ID	ID	ID	ID	4	
Dichlorvos	< 0.1	n/a	n/a	n/a	n/a	n/a	
Diazinon	< 0.1	ID	ID	ID	ID	0.01	
Dimethoate	< 0.1	ID	ID	ID	ID	0.15	
Ethion	< 0.1	n/a	n/a	n/a	n/a	n/a	
Fenthion	< 0.1	n/a	n/a	n/a	n/a	n/a	
Fenitrothion	< 0.1	ID	ID	ID	ID	0.001	
Valathion	< 0.1	ID	ID	ID	ID	0.05	
Parathion (Ethyl)	< 0.1	ID	ID	ID	ID	0.004	
Parathion Methyl	< 0.1	n/a	n/a	n/a	n/a	n/a	
Pirimiphos-Ethyl8	< 0.1	n/a	n/a	n/a	n/a	n/a	
Pirimiphos-Methyl9	< 0.1	n/a	n/a	n/a	n/a	n/a	
Organochlorine pesticides (µ		1			I		
Aldrin	< 0.001	ID	ID	ID	ID	0.003	
Trans-Chlordane10	< 0.001	ID	ID	ID	ID	0.001	
Cis-Chlordane10	< 0.001	ID	ID	ID	ID	0.001	
Dxychlordane10	< 0.001	ID	ID	ID	ID	0.001	
Gamma-BHC (Lindane)	< 0.001	ID	ID	ID	ID	0.007	
alpha-BHC	< 0.001	n/a	n/a	n/a	n/a	n/a	
peta-BHC	< 0.001	n/a	n/a	n/a	n/a	n/a	
delta-BHC	< 0.001	n/a	n/a	n/a	n/a	n/a	
p,p-DDD	< 0.001	n/a	n/a	n/a	n/a	n/a	
o,p-DDE	< 0.001	ID	ID	ID	ID	0.0005	
p,p-DDT	< 0.001	ID	ID	ID	ID	0.0004	
Dieldrin	< 0.001	ID	ID	ID	ID	0.01	
Endrin	< 0.001	0.004	0.008	0.01	0.02	_	
Endrin aldehyde	< 0.001	n/a	n/a	n/a	n/a	n/a	
Endrin ketone	< 0.001	n/a	n/a	n/a	n/a	n/a	
alpha-Endosulfan	< 0.001	ID	ID	ID	ID	0.0002	
peta-Endosulfan	< 0.001	ID	ID	ID	ID	0.007	
Endosulfan sulfate11	< 0.001	0.005	0.01	0.02	0.05	-	
HCB (Hexachlorobenzene)	< 0.001	ID	ID	ID	ID	0.05	
Heptachlor	< 0.001	ID	ID	ID	ID	0.0004	
Heptachlor epoxide	< 0.001	n/a	n/a	n/a	n/a	n/a	
Vethoxychlor	< 0.001	ID	ID	ID	ID	0.004	
Phenol (µg/L)							
Phenol	0.39	270	400	520	720	_	
Nonylphenol	<1	ID	ID	ID	ID	1	

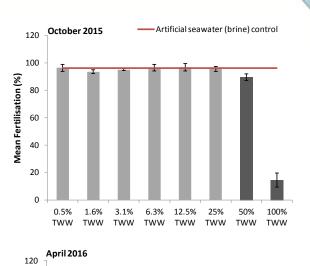

	SDOOL	ANZEC	C/ARMCANZ	Z (2000) qui	delines (µg/	′L)1	
Parameter	TWW		of protection		Lov		
i ulullotoi	2 Feb 2016		95%	90%	80%	reliability value (LRV)	
2-Chorophenol	< 0.1	ID	ID	ID	ID	340	
2-Methylphenol	< 0.1	n/a	n/a	n/a	n/a	n/a	
2,4-Dichlorophenol	0.11	ID	ID	ID	ID	120	
2-Nitrophenol	< 0.1	n/a	n/a	n/a	n/a	n/a	
4-Chloro-3-methylphenol	< 0.2	n/a	n/a	n/a	n/a	2	
2,4,6-Trichlorophenol	< 0.2	ID	ID	ID	ID	34	
4-Nitrophenol	< 0.2	ID	ID	ID	ID	2	
2,4,5-Trichlorophenol	< 0.2	n/a	n/a	n/a	n/a	n/a	
2,3,4,6-Trichlorophenol	<0.2	ID	ID	ID	ID	10	
Pentachlorophenol (PCP)	<0.2	11	22	33	55	_	
Phthalates (µg/L)	<0.2	11	22	33	55		
	<10			ID		3700	
Dimethyl phthalate	<10	ID	ID	ID	ID		
Diethyl phthalate	<10	ID ID	ID		ID	900 25	
Di-n-butyl phthalate	<10	n/a	n/a	n/a	n/a	25 n/a	
Butyl benzyl phthalate							
Bis(2-ethylhexyl) phthalate	<20	ID	ID	ID	ID	1	
PCB aroclors	0.1	10	10				
Aroclor 1016	< 0.1	ID	ID	ID	ID	0.009	
Aroclor 1221	< 0.1	ID	ID	ID	ID	1	
Aroclor 1232	< 0.1	ID	ID	ID	ID	0.3	
Aroclor 1242	< 0.1	ID	ID	ID	ID	0.3	
Aroclor 1248	< 0.1	ID	ID	ID	ID	0.03	
Aroclor 1254	< 0.1	ID	ID	ID	ID	0.01	
Aroclor 1260	< 0.1	ID	ID	ID	ID	n/a	
Total PCBs (as above)12	< 0.1	ID	ID	ID	ID	n/a	
Chlorinated hydrocarbons (µg.	1						
2-Chloronaphthalene	< 20	n/a	n/a	n/a	n/a	n/a	
1,4-Dichlorobenzene	< 20	ID	ID	ID	ID	60	
1,2-Dichlorobenzene	<20	ID	ID	ID	ID	160	
1,3-Dichlorobenzene	< 20	ID	ID	ID	ID	260	
Hexachlorobenzene	<20	ID	ID	ID	ID	0.05	
1,2,4-Trichlorobenzene	<20	20	80	140	240	_	
Hexachloroethane	<20	ID	ID	ID	ID	290	
Hexachlorocyclopentadiene	<20	ID	ID	ID	ID	0.05	
Hexachloro-1,3-butadiene13	<20	ID	ID	ID	ID	0.03	
Ethers (µg/L)	1					T	
4-Bromophenyl phenyl ether14	<20	n/a	n/a	n/a	n/a	n/a	
4-Chlorophenyl phenyl ether	<20	n/a	n/a	n/a	n/a	n/a	
Bis(2-chloroethyl)ether	<20	n/a	n/a	n/a	n/a	n/a	
Bis(2-chloroethoxy)methane	<20	n/a	n/a	n/a	n/a	n/a	
Bis(2-chloroisopropyl)ether	<20	n/a	n/a	n/a	n/a	n/a	
Amines, nitroaromatics nitros							
Azobenzene	<20	n/a	n/a	n/a	n/a	n/a	
2,4-Dinitrotoluene	<20	ID	ID	ID	ID	16	
2,6-Dinitrotoluene	<20	n/a	n/a	n/a	n/a	0.3	
Nitrobenzene	<20	ID	ID	ID	ID	550	
N-Nitrosodimethylamine	<20	n/a	n/a	n/a	n/a	n/a	
N-Nitrosodiphenylamine	< 20	ID	ID	ID	ID	6	

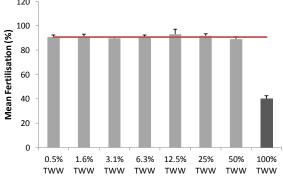
	SDOOL ANZECC/ARMCANZ (2000) guidelines (µg/L)1						
Parameter	TWW		Level of protection				
	2 Feb 2016		. 95%	90%	80%	reliability value (LRV)	
N-Nitrosodi-n-propylamine	<20	n/a	n/a	n/a	n/a	n/a	
Aniline	<20	ID	ID	ID	ID	8	
4-Chloroaniline	<20	n/a	n/a	n/a	n/a	n/a	
2-Nitroaniline	<20	n/a	n/a	n/a	n/a	n/a	
3-Nitroaniline	<20	n/a	n/a	n/a	n/a	n/a	
4-Nitroaniline	<20	n/a	n/a	n/a	n/a	n/a	
Other organics (µg/L)	~20	11/ 4	117 a	11/ 4	117 a	11/ 4	
Dichlorobenzidine15	<20	ID	ID	ID	ID	0.5	
2-Methylnaphthalene	<10	n/a	n/a	n/a	n/a	n/a	
		ID	ID	ID	ID	130	
Isophorone	<20						
Benzyl alcohol	<20	n/a	n/a	n/a	n/a	n/a	
Carbazole	<20	n/a	n/a	n/a	n/a	n/a	
Dibenzofuran	<20	n/a	n/a	n/a	n/a	n/a	
BTEX (µg/L)	1.0	5.0.0	7.0.5	0.07	1055		
Benzene	<1.0	500	700	900	1300	500	
Toluene	<1.0	ID	ID	ID	ID	180	
Ethylbenzene	<1.0	ID	ID	ID	ID	5	
Xylene16	<2.0	ID	ID	ID	ID	75	
Total BTEX12	<5.0	n/a	n/a	n/a	n/a	n/a	
Total petroleum hydrocarbon	is (TPH) (µg/L)						
TPH C6 - C917	<25	ID	ID	ID	ID	n/a	
TPH C10 - C1417	<25	ID	ID	ID	ID	n/a	
TPH C15 - C2817	< 100	ID	ID	ID	ID	n/a	
TPH C29 - C3617	120	ID	ID	ID	ID	n/a	
Total TPH17,18	<250	ID	ID	ID	ID	n/a	
Poly aromatic hydrocarbons	(PAHs) (µg/L)						
Naphthalene	< 0.01	50	70	90	120	-	
Acenaphthylene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Acenaphthene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Fluorene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Phenanthrene	< 0.01	ID	ID	ID	ID	2	
Anthracene	< 0.01	ID	ID	ID	ID	0.4	
Fluoranthene	< 0.01	ID	ID	ID	ID	1.4	
Pyrene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Benz(a)anthracene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Chrysene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Benzo(b,k)fluoranthene	< 0.02	n/a	n/a	n/a	n/a	n/a	
Benzo(a)pyrene	<0.02	n/a	n/a	n/a	n/a	n/a	
Indeno(1,2,3-cd)pyrene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Dibenz(a,h)anthracene	< 0.01	n/a	n/a	n/a	n/a	n/a	
Benzo(g,h,i)perylene	< 0.01	50	70	90	120	-	
Surfactants (mg/L)	1.0.01				120		
Methylene blue active substances (MBAS)19	0.60	n/a	n/a	n/a	n/a	n/a	
Miscellaneous other (mg/L ur	nless indicated)	I					
Chlorine-Free	< 0.01	ID	ID	ID	ID	3	
Chlorine-Total	< 0.01	ID	ID	ID	ID	3	
Dissolved Organic Carbon (DOC)	15	n/a	n/a	n/a	n/a	n/a	
Total organic carbon (TOC)	30	n/a	n/a	n/a	n/a	n/a	

watercorporation.com.au

	SDOOL	ANZECC/#	ANZECC/ARMCANZ (2000) guidelines (µg/L)1					
Parameter	TWW	Level of p	Level of protection					
	2 Feb 2016	99%	95%	90%	80%	reliability value (LRV)		
Total suspended solids (TSS)20	66	n/a	n/a	n/a	n/a	n/a		
Biological oxygen demand (BOD)	28	n/a	n/a	n/a	n/a	n/a		
pH21	7.5	n/a	n/a	n/a	n/a	n/a		


- The trigger values for marine waters are from Table 3.4.1 in ANZECC/ARMCANZ (2000a). The EPA has provided advice that in WA waters where a high level of protection applies, that the 99% species protection levels should be used, with the exception of cobalt, where the 95% species protection levels is used. Grey bold text represents the relevant ANZECC/ARMCANZ (2000a) guideline values and amber bold text represents an exceedance of guideline values prior to initial dilution.
- 2. Primary and secondary contact guideline for recreational marine waters are 35 and 230 Enterococci organisms/100 mL, respectively (ANZECC/ARMCANZ 2000a).
- n/a = ANZECC/ARMCANZ (2000a) guideline or LRV not available for this parameter.
 Primary and secondary contact guidelines for recreational marine waters 150 and 1 000
- Primary and secondary contact guidelines for recreational marine waters 150 and 1 00 faecal coliforms/100 mL (ANZECC/ARMCANZ 2000a), respectively.
 ID = insufficient data to derive a reliable national trigger value.
- 5. ID = insufficient data to derive a reliable national trigger value.
- 6. Recreational guideline for Dicamba = $300 \mu g/L$ (Table 5.2.4; ANZECC/ARMCANZ 2000a).
- 7. Recreational guideline for Triclopyr = $20 \mu g/L$ (Table 5.2.4; ANZECC/ARMCANZ 2000a). 8. Recreational guideline for Pirimiphos-ethyl = $1 \mu g/L$ (Table 5.2.4; ANZECC/ARMCANZ
- 8. Recreational guideline for Pirimiphos-ethyl = 1 μ g/L (Table 5.2.4; ANZECC/ARMCANZ 2000a)
- 9. Recreational guideline for Pirimiphos-methyl = 60 μ g/L (Table 5.2.4; ANZECC/ARMCANZ 2000a).
- 10. Guideline values are for total chlordane though cis-chlordane is ~7 times more toxic than transchlordane (ANZECC/ARMCANZ 2000a).
- 11. Guideline values are for Endosulphan, not Endosulphan sulfate (Table 3.4.1; ANZECC/ARMCANZ 2000a).
- 12. ANZECC/ARMCANZ (2000b) recommends using a formula to calculate total toxicity of the mixture if using total PCBs and BTEX (page 8.3-65; ANZECC/ARMCANZ 2000b).
- 13. Environmental Concern Level (ECL) for Hexachloro-1,3-butadiene (not LRV) (definition of ECL on page 8.3-35; page 8.3-231; ANZECC/ARMCANZ 2000b).
- Recommended ECL for 4-Bromophenyl phenyl ether = 12 μg/L (page 8.3-232; ANZECC/ARMCANZ 2000b).
- 15. ECL for Dichlorobenzidine (not LRV) (page 8.3-187; ANZECC/ARMCANZ 2000b).
- 16. Guideline for o-xylene = 350 μ g/L, for m-xylene = 75 μ g/L and for p-xylene = 200 μ g/L (ANZECC/ARMZANC 2000a).
- 17. Guideline values are for generic oils and petroleum hydrocarbons (Table 3.4.1; ANZECC/ARMCANZ 2000a).
- A generic estimate of 7 μg/L for a total petroleum hydrocarbon chronic value has been estimated using USEPA methods (page 8.3-297; ANZECC/ARMCANZ 2000b).
- 19. Recreational guideline for MBAS = 0.2 mg/L (ANZECC/ARMCANZ 2000a).
- 20. Suspended solids guidelines for the protection of saltwater aquaculture species = <10 mg/L (Table 4.4.2; ANZECC/ARMCANZ 2000a).
- pH guideline range for slightly disturbed inshore marine ecosystems in southwest Australia = 8.0 to 8.4 (Table 3.3.6; ANZECC/ARMCANZ 2000a).





Appendix B – WET Testing Results

1. Error bars represent \pm 1 standard deviation.

2. TWW = treated wastewater.

 Light grey bars represent concentrations of treated wastewater (TWW) at which there is no observed significant effect on fertilisation. Dark grey bars represent concentrations of TWW that acted to significantly reduce the success of sea urchin fertilisation.

4. Percent fertilisation value for EC50 (black bars) was estimated by halving the number of gametes fertilised in the control sample; i.e. the artificial seawater control.

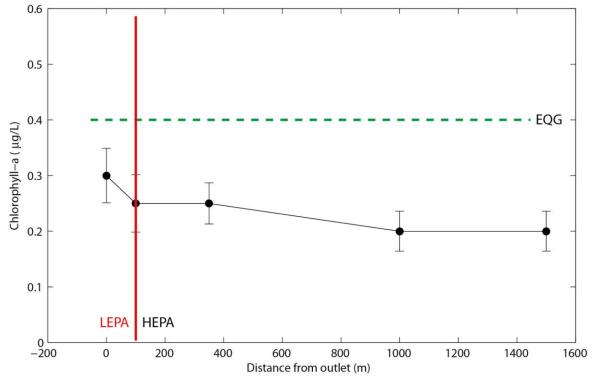
Figure B.1 Comparison of whole effluent toxicity TWW dilution results to artificial seawater control

Table B.1 Calculated parameters from whole of effluent toxicity tests

Indicator	July 2015	October 2015	January 2016	April 2016
NOEC	12.5%	25%	50%	50%
Dilutions required to meet the NOEC	8	4	2	2
Dilutions require/dilutions achieved	0.04	0.02	0.01	0.01
≤1	Yes	Yes	Yes	Yes

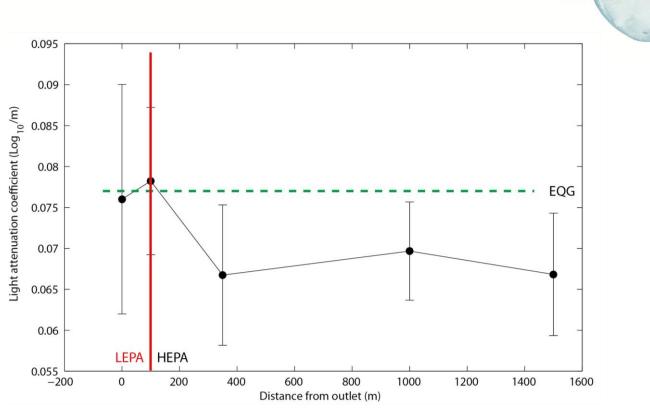
Notes:


1. NOEC = no observed effect concentration.



Appendix C – Physical Properties

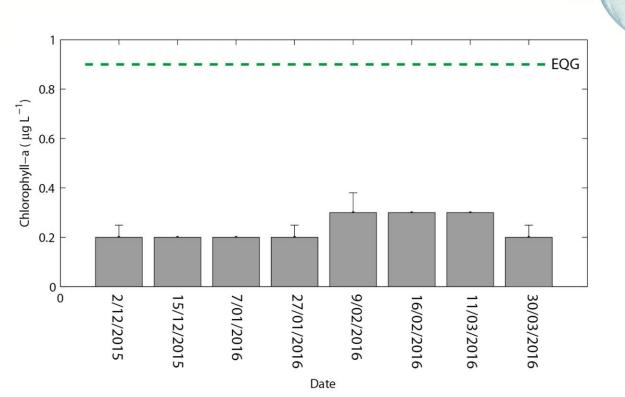
Nutrient enrichment



Notes:

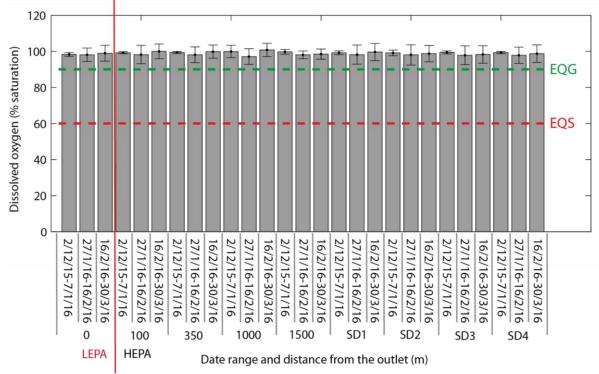
- 1. Error bars represent $\pm 95\%$ confidence intervals.
- Environmental Quality Guideline (EQG) is the 80th percentile of historical reference site data (0.4 µg/L chlorophyll-a).
- 3. LEPA = notional low ecological protection area; HEPA = high ecological protection area.
- 4. Data were pooled across eight sampling days (n=8) over December 2015-March 2016

Figure C.1 Median chlorophyll-a concentrations obtained at fixed monitoring sites above and down-current of the Sepia Depression outlet during the summer monitoring period



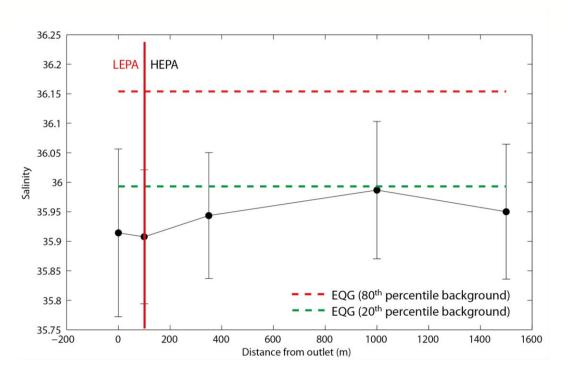
- 1. Error bars represent $\pm 95\%$ confidence intervals.
- Environmental Quality Guideline (EQG) is the 80th percentile of historical reference site data (0.077 Log₁₀/m).
- 3. LEPA = notional low ecological protection area; HEPA = high ecological protection area.
- Data for each distance was pooled across eight sampling occasions (n=8) over December 2015-March 2016.

Figure C.2 Median light attenuation coefficient obtained at fixed distances down-current of the Sepia Depression outlet during the summer monitoring period



- 1. Error bars represent $\pm 95\%$ confidence intervals.
- 2. Environmental Quality Guideline (EQG) is 3-times the median chlorophyll-a concentration of reference site data.
- Values measured at 0 m are not included in the figure or EQG assessment, as the 0 m site is situated directly above the outlet within the notional low ecological protection area (LEPA).
 Data were pooled across four sites within the high ecological protection area (HEPA) (n=4).

Figure C.3 Median phytoplankton biomass during the summer monitoring period, pooling data from fixed sites ≥100 m down-current of the Sepia Depression ocean outlet



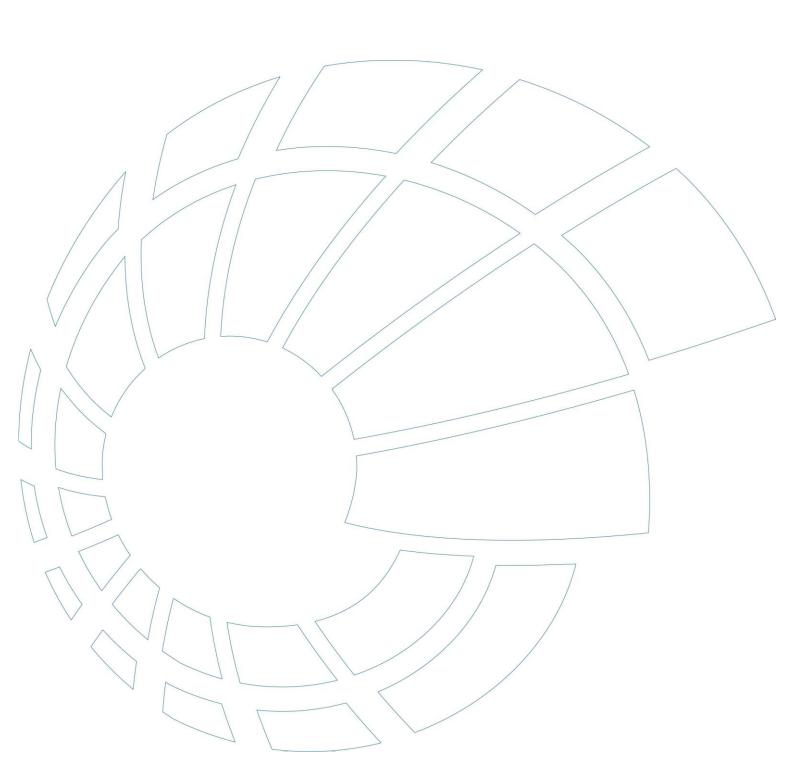
- 1. Error bars represent ±95% confidence intervals.
- 2. Dissolved oxygen (DO) measured 0-0.5 m above the seabed.
- Environmental Quality Guideline (EQG) = 90% DO saturation; Environmental Quality Standard (EQS) = 60% DO saturation.
- 4. LEPA = notional low ecological protection area; HEPA = high ecological protection area.
- 5. Reference site data (SD1–SD4) are compared against EQG and EQG for contextual purposes only.

Figure C.4 Median dissolved oxygen for defined periods of ≤6 weeks during the summer monitoring period

- 1. Error bars represent $\pm 95\%$ confidence intervals.
- 2. Salinity measured 0-0.5 m below the sea surface.
- 3. LEPA = notional low ecological protection area; HEPA = high ecological protection area.
- 4. Data for each distance were pooled across eight sampling occasions (n=8) over December 2015 to March 2016.

Figure C.5 Median salinity compared to the 20th and 80th percentile of reference site data during the summer monitoring period

Appendix D – Sepia Depression Microbial Sample Data



Date	Site	Enterococci spp.	Site	TTC
2-Dec-15	SD9	73	SD26	<10
2-Dec-15	SD10	<10	SD27	<10
2-Dec-15	SD11	<10	SD28	<10
2-Dec-15	SD12	<10	SD29	<10
2-Dec-15	SD13	<10	SD30	<10
15-Dec-15	SD5	<10	SD20	<10
15-Dec-15	SD6	810	SD21	<10
15-Dec-15	SD7	710	SD22	10
15-Dec-15	SD8	430	SD23	27
15-Dec-15	SD9	<10	SD24	<10
7-Jan-16	SD1	230	SD28	<10
7-Jan-16	SD13	<10	SD29	<10
7-Jan-16	SD14	63	SD30	10
7-Jan-16	SD15	580	SD31	36
7-Jan-16	SD16	910	SD32	<10
27-Jan-16	SD7	580	SD24	170
27-Jan-16	SD8	580	SD25	<10
27-Jan-16	SD9	210	SD26	<10
27-Jan-16	SD10	10	SD27	<10
27-Jan-16	SD11	<10	SD28	<10
9-Feb-16	SD1	310	SD17	<10
9-Feb-16	SD2	760	SD29	<10
9-Feb-16	SD3	<10	SD30	10
9-Feb-16	SD15	<10	SD31	<10
9-Feb-16	SD16	400	SD32	<10
16-Feb-16	SD11	<10	SD27	<10
16-Feb-16	SD12	<10	SD28	<10
16-Feb-16	SD13	<10	SD29	<10
16-Feb-16	SD14	41	SD30	<10
16-Feb-16	SD15	97	SD31	<10
11-Mar-16	SD5	<10	SD20	<10
11-Mar-16	SD6	<10	SD21	<10
11-Mar-16	SD7	320	SD22	10
11-Mar-16	SD8	<10	SD23	370
11-Mar-16	SD9	<10	SD24	<10
30-Mar-16	SD3	<10	SD24	<10
30-Mar-16	SD4	<10	SD25	<10
30-Mar-16	SD5	<10	SD26	<10
30-Mar-16	SD6	570	SD27	<10
30-Mar-16	SD7	720	SD28	<10

BMT Oceanica Pty Ltd PO Box 462, Wembley, WA 6913, Australia Tel: +61 8 6272 0000 Fax: +61 8 6272 0099 bmtoceanica@bmtoceanica.com.au www.bmtoceanica.com.au

